O.P.Code: 18EE0203

R18

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations June-2024 ELECTROMAGNETIC FIELDS

	(Flectrical and Flectronica Engineering)			
	(Electrical and Electronics Engineering) Time: 3 Hours	Max. Marks: 60		
		max.	. Mar	ks: 60
	PART-A			
1	(Answer all the Questions $5 \times 2 = 10$ Marks)			
1	a Write the equestion for orthogonal coordinatesystems.	CO ₁	L2	2M
	b State vector form of coulombs law.	CO1	L1	2M
	c Define polarization in dielectric materials.	CO ₁	L1	2M
	d Define mutual inductance.	CO ₁	L1	2M
	e Define skin depth.	CO ₁	L1	2M
	PART-B			
	(Answer all Five Units $5 \times 10 = 50$ Marks)			2
	UNIT-I			
2	The vector from the origin to point A is given as (6,-2,-4), and the unit vector	001	τ.α	403.5
	directed from the origin toward point P is (2, 2, 1)/2 If == into A = 1 P	CO1	L3	10M
	directed from the origin toward point B is (2, -2,1)/3. If points A and B are ten units			
	apart, find the Coordinates of point B.			
3	OR			
3	Given point P(r=0.8, $\boldsymbol{\theta}$ =30°, Φ =45°), and E=1/r ² (cos Φ a _r +sin Φ /sin $\boldsymbol{\theta}$ a _{Φ}); (a) Find E	CO ₁	L3	10M
	at P; (b) Find E at P; (c) Find a unit vector in the direction of E at P.			
	UNIT-II			
4	a Derive Laplace and Poisson's equation.	CO ₂	L3	5M
	b Find electric potential due to electric dipole.	CO2	L3	5M
	OR	002	LJ	SIVE
5	Four positive point charges 10^{-12} coulomb each are situated in X-Y plane at points	CO ₂	L3	10M
	(0, 0), (0, 1) (1, 1) and (1, 0) m. Find the electric field and potential at (3/4, 3/4) and	COZ	ШЭ	TOTAT
	(1, 1)?			
	UNIT-III			
6	Explain the boundary conditions of two perfect dielectrics materials.	000		
U		CO ₃	L2	10M
7	OR			
,	a Derive the expression for parallel plate capacitor.	CO ₃	L3	5M
	b What is the energy stored in a capacitor made of two parallel metal plates each of	CO ₃	L3	5M
	30 cm ² area separated by 5 mm in air. $\varepsilon_0 = 8.854 \times 10^{-12}$. The capacitor is charged			
	to potential difference of 500v.			
	UNIT-IV			
8	Derive the expression for torque produced on a closed current carrying when placed	CO4	T 2	101/
	in a magnetic field.	CU4	L3	10M
	OR			
9	Derive the expression for self inductance of solenoid and toroid.	004	T 4	4075
,		CO ₄	L3	10M
10	UNIT-V			
10	State and prove poynting theorem.	CO ₅	L1	10M
4.4	OR			
11	Explain faradays law of electromagnetic induction and derive the expression for	CO ₅	L2	10M
	induced e.m.f.			
	1.1.1 777 1.1.1			